First Results Obtained with a New System for Complex Radiotherapy Treatment Verification

M. C. Ovejero^{1,2}, A. Selva⁵, M.C. Battaglia², J. M. Espino¹, M. I. Gallardo¹, A. Pérez Vega-Leal⁴, M. A. G. Alvarez⁶, Z. Abou-Haida²

R. Arráns³, M. A. Cortés-Giraldo¹, R. Núñez⁴, J.M. Quesada¹

¹ Department of Atomic, Molecular and Nuclear Physics, University of Seville, Seville, Spain

² National Center of Accelerators (CNA), Seville, Spain

³ Virgen Macarena University Hospital, Seville, Spain

⁴ Department of Electronic Engineering, University of Seville, Seville, Spain

⁵ Department of Physics and Astronomy, University of Padova, Padova, Italy

⁶ Physics Institute, University of Sao Paulo, Sao Paulo, Brazil

Detector

	First prototype: W1(SS)- 500 detector [1]	Current prototype: Dual chip SSSD BB7
Nº Junction elements	16	32
Element lenght	49.5 mm	64 mm
Element pitch	3.1 mm	2 mm
Active Area	50x50mm ²	64x64mm ²
Thickness	500 μm	500 µm (each SSSSD)
Element active volume	49.5x3.0x0.5mm ³	64x2.0x0.5mm ³
Metalization	Aluminum 0.3 μm	Aluminum 0.3 μm
Package	PCB with edge connections on one side	PCB (kapton)

Clinical Linac

The characterization of the detector has been carried out at the Virgen Macarena University Hospital (Sevilla) with a Siemens Primus clinical linac, working at

Data Acquisition System

CPAN

"Dual chip SSSSD BB7" Manufactured by Micron Semiconductor. Two single sided silicon strip detectors (SSSSD), separated by a dielectric layer of kapton, in a "back-to-back" configuration.

Human Machine Interface

Flat Phantom

photonmodewithanominalbeamenergyof6MV.

A 300mm x 300mm x 50mm Phantom has been built with polyethylene.

The detector is placed inside to be irradiated with a beam perpendicular to the active area. 1000 Ster

The data acquisition system is optimized to achieve a linear output in the range of interest.

Linearity

The new interface allows to manage the data acquisition system.

An online or offline data analysis can be performed thanks to the newly designed, user friendly interface. **Deviation from linearity within 0.05%** (<0.1% from previous system)

Linear range from 6cGy to 400cGy
Resolution up to 0,32cGy
Good reproducibility of measurements within 0.05% Deviations from mean value < 0.1% (< 0.5% from previous system)

✓ Output Factor (preliminary)

✓ Dose Calibration

✓ Penumbra

CONCLUSIONS

- A study of linearity, reproducibility, uniformity, resolution, percent depth dose (PDD), dose calibration and output factor of the detection system has been performed.
- The new system has an improved performance in comparison to the first prototype.

References

[1] A. Bocci, M. A. Cortés-Giraldo, M. I. Gallardo, J. M. Espino, R. Arráns, M. A. G. Alvarez, Z. Abou-Haïdar, J. M. Quesada, A. Pérez Vega-Leal, F. J. Pérez Nieto, Nuclear Instruments and Methods in Physics Research A 673 (2012) 98-106;